1、数轴:
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点,单位长度,正方向。
(3)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)
(4)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2、相反数:
(1)相反数的概念:只有符号不同的两个数叫做互为相反数。
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3、绝对值:
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。
互为相反数的两个数绝对值相等。
绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
有理数的绝对值都是非负数。
2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:
当a是正有理数时,a的绝对值是它本身a。
当a是负有理数时,a的绝对值是它的相反数﹣a。
当a是零时,a的绝对值是零,即|a|={a(a>0)0(a=0)﹣a(a
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 engola@qq.com 举报,一经查实,本站将立刻删除。文章链接:https://www.4baike.com/n/12062.html